Физиология эритроцитов и лейкоцитов - MedFsh.ru
Кровь как внутренняя среда организма. Физиология эритроцитов и лейкоцитов
Башкирский государственный медицинский университет
БашГМУ
Нормальная физиология

Кровь как внутренняя среда организма. Физиология эритроцитов и лейкоцитов

Цельная кровь состоит из жидкой части крови – плазмы – 54-64% (55-60%) и форменных элементов – эритроцитов, лейкоцитов и тромбоцитов — 36-46% (40-45%).

Количество крови в организме составляет 6-8% от массы тела, то есть у человека массой 65-70 кг количество крови 4,5-5 литров. В состоянии покоя до 45-50% всей массы крови находится в кровяных депо – селезенке, печени, легких и подкожном сосудистом сплетении.

Функции крови

  1. Транспортная функция – кровь переносит (транспортирует) различные вещества. Эта функция включает в себя:
    • дыхательную – перенос кислорода и углекислого газа.
    • трофическую — перенос питательных веществ.
    • экскреторную – транспорт конечных продуктов обмена веществ (мочевины, мочевой кислоты, СО2 и др.), а также избыточной воды, минеральных и органических веществ к органам выделения (почки, легкие, потовые железы).
    • терморегуляторную – кровь транспортирует тепло от более нагретых органов к менее нагретым и к органам теплоотдачи.
  2. Защитная функция – включает в себя:
    • иммунные реакции, т.е. кровь способна обезвреживать инородные тела и патогенные микроорганизмы;
    • гемостаз – способность крови к свертыванию и к остановке кровотечения, а также к поддержанию крови в жидком состоянии в норме.
  3. Регуляторная функция – включает в себя:
    • гуморальную регуляцию функций различных систем и тканей через доставку гормонов, биологически активных веществ (БАВ) к клеткам организма;
    • секрецию клетками крови БАВ.
  4. Гомеостатическая функция – участие крови в поддержании постоянства внутренней среды организма (например, постоянства рН, водно-солевого обмена) и регенерации тканей.

Плазма крови

Плазма крови состоит из воды (90-92%) и сухого остатка (8 -10%).

Сухой остаток представлен:

  1. органическими соединениями. Из них:
    • белки — 7-8%;
    • остаточный азот в составе аммиака, мочевины, мочевой кислоты, креатина, креатинина 14-28 ммоль/л;
    • углеводы в виде глюкозы 3,6-6,5 ммоль/л;
    • липиды, в зависимости от характера принятой пищи – 2,0-4,0 г/л.
  2. Неорганическими соединениями — общее количество неорганических веществ плазмы крови составляет около 0,9%. К ним относятся:
    • катионы (Na+, K+, Ca+, Mg+)
    • анионы (Cl, SO42-, PO42-, HCO3
    • микроэлементы (йод, бром, железо, медь, марганец, цинк и др.)

Удельный вес плазмы (относительная плотность) составляет 1,029-1,032 (1,025-1,032). Удельный вес цельной крови — 1,052-1,062 (1,060-1,064) и зависит от содержания форменных элементов, белков, липидов.

Содержание некоторых веществ в плазме крови колеблется в очень небольших пределах. Такие показатели называются жесткими константами, поскольку при существенных сдвигах их концентрации существует опасность нарушения функции клеток, приводящая к гибели организма.

К жестким константам относят: кислотно-основное состояние (рН), постоянство ионного состава крови, осмотическое и онкотическое давления крови.

Кислотно-щелочное состояние крови

Активная реакция крови (рН) обусловлена соотношением водородных (Н+) и гидроксильных (ОН) ионов. В норме рН артериальной крови — 7,4, венозной — 7,34.

В процессе метаболизма в кровь непрерывно поступают углекислота, молочная кислота и др. продукты обмена, увеличивающие концентрацию Н+ ионов. Они вызывают сдвиг рН в кислую сторону (менее 7,34), что получило название ацидоз.

Увеличение концентрации щелочей (гидроксильных ионов ОН) приводит к сдвигу реакции в щелочную сторону (более 7,4) – возникает алкалоз.

Регулируют рН различные органы и системы, главными из которых являются легкие, почки и органы ЖКТ. Большую роль в стабилизации рН крови играют буферные системы крови:

  1. Гемоглобина. Она представлена восстановленным гемоглобином (ННb) и его калиевой солью (КНb). Это самая мощная буферная система крови, на ее долю приходится 75% буферной емкости крови.
  2. Карбонатная, представлена – гидрокарбонатом натрия и угольной кислотой (NaHCO3/H2CO3)
  3. Фосфатная буферная система. Включает соли фосфорной кислоты (Na2HPO4 и NaH2PO4).
  4. Белковая буферная система, обусловлена наличием у белков плазмы амфотерных свойств.

Постоянство ионного состава крови

Как уже отмечалось, количество неорганических веществ плазмы составляет около 0,9%.

Эти неорганические вещества совместно с белками плазмы создают осмотическое давление крови.

Осмотическое давление – это сила, способствующая переходу воды через полупроницаемую мембрану из раствора с меньшей концентрацией в более концентрированный раствор. Осмотическое давление определяет транспорт воды из внеклеточной среды организма в клетки и наоборот.

Свыше 60% осмотического давления создается хлористым натрием, а всего на долю неорганических электролитов приходится до 96% общего осмотического давления.

Осмотическое давление составляет у здорового человека в среднем 7,6 атм. Растворы, осмотическое давление которых такое же, как у плазмы, называют изотоническими (0,9%). Жидкости, с более высоким осмотическим давлением, называют гипертоническими (более 0,9%), а с меньшим гипотоническими  (менее 0,9%).

Онкотическое давление крови

Это давление крови (25 — 30 мм рт. ст. или 0,03 – 0,04 атм.) создается белками. От уровня этого давления зависит обмен воды между кровью и межклеточной жидкостью. Онкотическое давление плазмы крови обусловлено всеми белками крови, но основной вклад (на 80%) вносят альбумины. Крупные молекулы белков не способны выходить за пределы кровеносных сосудов, и будучи гидрофильными, удерживают воду внутри сосудов. Благодаря этому белки играют важную роль в транскапиллярном обмене. Гипопротеинемия, возникающая, например, в результате голодания, сопровождается отеками тканей (переходом воды в межклеточное пространство).

Общее количество белков в плазме составляет 7-8% или 65-85 г/л.

Функции белков крови.

  1. Питательная функция.
  2. Транспортная функция.
  3. Создание онкотического давления.
  4. Буферная функция – за счет наличия в составе белков плазмы щелочных и кислых аминокислот, белки участвуют в поддержании кислотно-основного равновесия.
  5. Участие в процессах гемостаза. Процесс свертывания включает целую цепь реакций, в которых участвует ряд белков плазмы (фибриноген и др.).
  6. Белки вместе с эритроцитами определяют вязкость крови – 4,0-5,0, что в свою очередь оказывает влияние на гидростатическое давление крови, СОЭ и др. Вязкость плазмы составляет 1,8 – 2,2 (1,8-2,5). Она обусловлена наличием в плазме белков. При обильном белковом питании вязкость плазмы и крови повышается.
  7. Белки являются важным компонентом защитной функции крови (особенно γ-глобулины). Они обеспечивают гуморальный иммунитет, являясь антителами.

Белки плазмы крови

Все белки плазмы крови делят на 3 группы:

  • альбумины,
  • глобулины,
  • фибриноген.

Альбумины

Альбумины (до 50 г/л). Их 4-5% от массы плазмы, т.е. около 60% всех белков плазмы приходится на их долю. Они являются самыми низкомолекулярными. Их молекулярная масса около 70 000 (66 000). Альбумины на 80% определяют коллоидно-осмотическое (онкотическое) давление плазмы. Общая площадь поверхности множества мелких молекул альбумина очень велика, и поэтому они особенно хорошо подходят для выполнения функции переносчиков различных веществ. Они переносят: билирубин, уробилин, соли тяжелых металлов, жирные кислоты, лекарственные препараты (антибиотики и др.). Одна молекула альбумина может одновременно связать 20-50 молекул билирубина. Альбумины образуются в печени. При патологических состояниях их содержание снижается.

Глобулины

Глобулины (20-30 г/л). Их количество доходит до 3% от массы плазмы и 35-40% от общего количества белков, молекулярная масса до 450 000.

Различают α1, α2, β и γ –глобулины (рис. 1).

Белки плазмы

Во фракции α1–глобулинов (4%) имеются белки, простетической группой которых являются углеводы. Эти белки называют гликопротеинами. Около 2/3 всей глюкозы плазмы циркулирует в составе этих белков.

Фракция α2–глобулинов (8%)   включает гаптоглобины, относящиеся по химическому строению к мукопротеинам, и медьсвязывающий белок — церулоплазмин. Церулоплазмин связывает около 90% всей меди, содержащейся в плазме.

К другим белкам во фракции α2–глобулинов относятся тироксинсвязывающий белок, витамин – В12 — связывающий глобулин, кортизол-связывающий глобулин.

К β–глобулинам (12%) относятся важнейшие белковые переносчики липидов и полисахаридов. Важное значение липопротеидов состоит в том, что они удерживают в растворе нерастворимые в воде жиры и липиды и обеспечивают тем самым их перенос кровью. Около 75% всех липидов плазмы входят в состав липопротеидов.

β–глобулины участвуют в транспорте фосфолипидов, холестерина, стероидных гормонов, катионов металлов (железа, меди).

К третьей группе — γ–глобулинам (16%) относятся белки с самой низкой электрофоретической подвижностью. γ–глобулины участвуют в формировании антител, защищают организм от воздействий вирусов, бактерий, токсинов.

Почти при всех заболеваниях, особенно при воспалительных, содержание γ–глобулинов в плазме повышается. Повышение фракции γ – глобулинов сопровождается понижением фракции альбуминов. Происходит снижение так называемого альбумин-глобулинового индекса, который в норме составляет 0,2/2,0.

К γ–глобулинам относят также антитела крови (α и βагглютинины), определяющие ее принадлежность к той или иной группе крови.

Глобулины образуются в печени, костном мозге, селезенке, лимфатических узлах. Период полураспада глобулинов до 5 дней.

Фибриноген

Фибриноген (2-4 г/л). Его количество составляет 0,2 – 0,4% от массы плазмы, молекулярная масса 340 000.

Он обладает свойством становиться нерастворимым, переходя под воздействием фермента тромбина в волокнистую структуру — фибрин, что и обусловливает свертывание (коагуляцию) крови.

Фибриноген образуется в печени. Плазма, лишенная фибриногена называется сывороткой.

Физиология эритроцитов

Эритроциты – красные кровяные клетки, не содержащие ядра (рис.2).

У мужчин в 1 мкл крови содержится в среднем 4,5-5,5 млн. (около 5,2 млн. эритроцитов или 5,2х1012/л). У женщин эритроцитов меньше и не превышает 4-5 млн. в 1 мкл (около 4,7х1012/л).

Эритроциты человека (электронная микроскопия)

Функции эритроцитов

  1. Транспортная – перенос кислорода от легких к тканям и углекислого газа от тканей к альвеолам легких. Возможность выполнять эту функцию связана с особенностями строения эритроцита: он лишен ядра, 90% его массы составляет гемоглобин, остальные 10% приходятся на белки, липиды, холестерин, минеральные соли.

Кроме газов эритроциты переносят аминокислоты, пептиды, нуклеотиды к различным органам и тканям.

  1. Участие в иммунных реакциях – агглютинации, лизиса и т.п., что связано с наличием в мембране эритроцитов комплекса специфических соединений – антигенов (агглютиногенов).
  2. Детоксицирующая     функция     –     способность                  адсорбировать токсические вещества и их инактивировать.
  3. Участие в стабилизации кислотно-основного состояния крови за счет гемоглобина и фермента карбоангидразы.
  4. Участие в процессах свертывания крови за счет адсорбции на мембране эритроцитов ферментов этих систем.

Свойства эритроцитов

  1. Пластичность (деформируемость) – это способность эритроцитов к обратимой деформации при прохождении через микропоры и узкие извитые капилляры диаметром до 2,5-3 мкм. Это свойство обеспечивается благодаря особой форме эритроцита – двояковогнутого диска.
  2. Осмотическая стойкость эритроцитов. Осмотическое давление в эритроцитах несколько выше, чем в плазме, что обеспечивает тургор клеток. Оно создается более высокой внутриклеточной концентрацией белков по сравнению с плазмой крови.
  3. Агрегация эритроцитов. При замедлении движения крови и повышении ее вязкости эритроциты образуют агрегаты или монетные столбики. Вначале агрегация носит обратимый характер, но при более длительном нарушении кровотока образуются истинные агрегаты, что может привести к микротромбообразованию.
  4. Эритроциты способны отталкиваться друг от друга, что связано со строением мембраны эритроцитов. Гликопротеины, составляющие 52% массы мембраны, содержат сиаловую кислоту, которая придает отрицательный заряд эритроцитам.

Эритроцит функционирует максимум 120 дней, в среднем 60-90 дней. По мере старения способность эритроцитов к деформации снижается, а превращение их в сфероциты (имеющие форму шара) за счет изменения цитоскелета приводит к тому, что они не могут проходить через капилляры диаметром до 3 мкм.

Эритроциты разрушаются внутри сосудов (внутрисосудистый гемолиз) или захватываются и разрушаются макрофагами в селезенке, купферовских клетках печени и костном мозге (внутриклеточный гемолиз).

Эритропоэз

Эритропоэз – процесс образования эритроцитов в костном мозге. Первой морфологически распознаваемой клеткой эритроидного ряда, образующейся из КОЕ-Э (предшественница эритроидного ряда), является проэритробласт, из которого в ходе 4-5 последующих удвоений и созревания образуется 16-32 зрелые эритроидные клетки.

  • 1 проэритробласт
  • 2 базофильных эритробласта I порядка
  • 4 базофильных эритробласта II порядка
  • 8 полихроматофильных эритробластов I порядка
  • 16 полихроматофильных эритробластов II порядка
  • 32 полихроматофильных нормобласта
  • 32 оксифильных нормобласта — денуклеация нормобластов
  • 32 ретикулоцита
  • 32 эритроцита.

Эритропоэз в костном мозге занимает 5 дней.

В костном мозге человека и животных эритропоэз (от проэритробласта до ретикулоцита) протекает в эритробластических островках костного мозга, которых в норме содержится до 137 на 1 мг ткани костного мозга. При угнетении эритропоэза их количество может уменьшаться в несколько раз, а при стимуляции – увеличиваться.

Из костного мозга в кровь поступают ретикулоциты, в течение суток созревающие в эритроциты. По количеству ретикулоцитов судят об эритроцитарной продукции костного мозга и интенсивности эритропоэза. У человека их количество составляет от 6 до 15 ретикулоцитов на 1000 эритроцитов.

За сутки в 1мкл крови поступает 60-80 тыс. эритроцитов. За 1 минуту образуется 160х106 эритроцитов.

Гуморальным регулятором эритропоэза является гомон эритропоэтин. Основным источником его у человека являются почки, их перитубулярные клетки. В них образуется до 85-90% гормона. Остальное количество вырабатывается в печени, подчелюстной слюнной железе.

Эритропоэтин усиливает пролиферацию всех способных к делению эритробластов и ускоряет синтез гемоглобина во всех эритроидных клетках, в ретикулоцитах, «запускает» в чувствительных к нему клетках синтез иРНК, необходимых для образования энзимов, участвующих в формировании гема и глобина. Гормон также увеличивает кровоток в сосудах, окружающих

эритропоэтическую ткань в костном мозге и увеличивает выход в кровь ретикулоцитов из синусоидов красного костного мозга.

Физиология лейкоцитов

Лейкоциты или белые кровяные тельца – это клетки крови, различной формы и величины, содержащие ядра.

В среднем у взрослого здорового человека в крови содержится 4-9х109лейкоцитов.

Увеличение их количества в крови получило название лейкоцитоз, уменьшение – лейкопения.

Лейкоциты, имеющие в цитоплазме зернистость, называются гранулоцитами, а не содержащие зернистость – агранулоцитами.

К гранулоцитам относят: нейтрофильные (палочкоядерные, сегментоядерные), базофильные и эозинофильные лейкоциты, а к агранулоцитам – лимфоциты и моноциты. Процентное соотношение между различными формами лейкоцитов называется лейкоцитарной формулой или лейкограммой (таб.1.).

Лейкоцитарная формула, таблица

Все виды лейкоцитов способны к амебовидному движению, благодаря чему они могут выходить (мигрировать) через стенку кровеносных сосудов (этот процесс называется диапедезом).

Они обладают положительным хемотаксисом (направленным движением к объекту) по отношению к бактериальным токсинам, продуктам распада бактерий или клеток организма и комплексам антиген-антитело.

Лейкоциты способны окружать инородные тела и захватывать их в цитоплазму (фагоцитоз).

Большая часть (50%) лейкоцитов находится за пределами сосудистого русла в межклеточном пространстве, а также в костном мозге.

Нейтрофильные гранулоциты

Нейтрофилы являются полиморфноядерными и составляют основную часть лейкоцитов периферической крови.

Формируясь в красном костном мозге, они в течение 8-10 суток созревают. Зрелые сегментоядерные нейтрофилы через 3-5 суток попадают в кровоток, где находятся в среднем 6-8 часов и далее переносятся к тканям, где, превращаются в микрофаги и, выполнив свои функции, погибают.

Нейтрофилы – это самые важные функциональные элементы неспецифической защиты крови.

Основные функции нейтрофилов:

  1. фагоцитоз,
  2. внутриклеточное переваривание
  3. цитотоксическое действие,
  4. дегрануляция с выделением лизосомальных ферментов.

Зрелый нейтрофил имеет ядро, сегментированное на 2-5 долей, а также множество гранул в цитоплазме. Часть гранул содержит лизосомы, содержащие ферменты, такие как: лизоцим, повреждающий стенку бактерий; катионные белки, нарушающие дыхание и рост микроорганизмов; протеазы и кислые гидролазы, позволяющие нейтрофилам легко переваривать поглощенные объекты. Другая часть гранул содержит лактоферрин, оказывающий бактериостатическое действие (приостанавливает развитие и размножение бактерий), и также транскобаламины – переносчики витамина В12 в крови. Также имеются гранулы, в которых содержатся гликозаминогликаны, участвующие в процессах размножения, роста и регенерации тканей.

Базофильные гранулоциты

Базофилы созревают в спинном мозге в течение 36 часов, затем зрелые базофилы депонируются в синусах красного костного мозга и через 2-7 дней выходят в кровь, где циркулируют всего 6 часов, после чего могут мигрировать в ткани.

Различают 2 вида базофилов: циркулирующие в периферической крови – гранулоциты-базофилы и находящиеся в тканях – тканевые базофилы или тучные клетки.

Функции базофилов:

  1. формирование аллергических реакций немедленного типа;
  2. поддержание кровотока тканей и рост новых капилляров;
  3. обеспечение миграции других лейкоцитов в ткани;
  4. фагоцитоз.

Цитоплазма зрелых базофилов содержит гранулы с биологически активными веществами, захваченными из тканей. Постоянно присутствуют в клетке: кислые глюкозаминогликаны, гистамин, гепарин. Также в базофиле содержится «фактор, активирующий тромбоциты», «эозинофильный хемотаксический фактор анафилаксии», способствующий выходу эозинофилов из сосудов в места скопления базофилов. При повышении чувствительности организма к аллергенам, в базофилах образуется «медленно реагирующая субстанция анафилаксии», вызывающая спазм гладкой мускулатуры.

Эозинофильные гранулоциты

Образуются эозинофилы в красном костном мозге. Созревание их идет около 34 часов, затем они на 2-4 часа попадают в кровоток, откуда направляются в периферические ткани: кожу, слизистые ЖКТ, бронхов, мочеполовых путей, где оказывают свои эффекты. Их количество в этих тканях в 100-300 раз превышает содержание в кровяном русле.

Эозинофилы содержат 2-х или 3-х дольчатое ядро. Цитоплазма почти полностью заполнена специфическими гранулами, содержащими в большом количестве пероксидазу, β-глюкоронидазу, фосфолипиды, полисахариды, аминокислоты, кислую фосфатазу и могут рассматриваться как лизосомы. Являются антагонистами базофилов и тучных клеток.

Функции эозинофилов:

  1. уменьшают аллергические реакции;
  2. осуществляют противопаразитарный иммунитет;
  3. предупреждают проникновение чужеродных антигенов в кровоток.

При аллергических реакциях эозинофилы накапливаются в тканях и выделяют вещества – антагонисты гепарина, гистамина и субстанции анафилаксии базофилов. Эозинофилы способны фагоцитировать гранулы, выделяемые базофилами. Так, гистамин, является стимулом для увеличения количества эозинофилов. Они продуцируют фермент гистаминазу, которая разрушает данное вещество.

Моноциты-макрофаги (система фагоцитирующих мононуклеаров)

Моноциты образуются в костном мозге, в кровь выходят неокончательно созревшими клетками. Среднее время пребывания моноцитов в крови составляет от 36 до 104 часов. Способность к фагоцитозу у них более выражена, чем у других форменных элементов крови. Из крови моноциты выходят в окружающие ткани, здесь они растут и содержащиеся в них лизосомы и митохондрии увеличиваются. Достигнув зрелости, моноциты превращаются в неподвижные клетки – гистиоциты или тканевые макрофаги. Продолжительность жизни макрофагов в тканях до 3-х недель.

Моноциты – это крупные клетки диаметром 12-20 мкм. Для них характерно максимальное содержание лизосом, наличия множества выростов на мембране, содержащей рецепторы для лимфокинов и др. веществ.

Моноциты – важнейшие клеточные факторы неспецифической резистентности (устойчивости) организма в связи с наличием у них фагоцитарной и бактерицидной активности.

Функции моноцитов:

  1. фагоцитарная защита против микробной инфекции;
  2. токсический эффект метаболитов макрофагов на паразитов человека;
  3. участие в иммунном ответе организма и воспалении;
  4. регенерация тканей и противоопухолевая защита;
  5. регуляция гемопоэза;
  6. фагоцитоз старых и поврежденных клеток крови.

Гистиоциты образуют отграничивающий вал вокруг инородных тел, которые не могут быть разрушены ферментами. Этих клеток всегда много в лимфоузлах, печени, селезенке и костном мозге. Причем, максимальная фагоцитарная активность проявляется у макрофагов в кислой среде, в которой нейтрофилы теряют свою активность.

Лимфоциты

Лимфоциты представляют центральное звено иммунной системы организма. Они отвечают за формирование специфического иммунитета и осуществляют функцию иммунного надзора в организме, обеспечивая защиту от всего чужеродного и сохраняя генетическое постоянство внутренней среды. Лимфоциты обладают способностью различать в организме «свое» и «чужое» вследствие наличия в их оболочке специфических участков-рецепторов, активирующихся при контакте с чужеродными белками. Лимфоциты осуществляют синтез защитных антител, лизис чужеродных клеток, обеспечивают реакцию отторжения трансплантата, иммунную память, уничтожение собственных мутантных клеток и другое.

Все лимфоциты делятся на три группы:

  1. Т-лимфоциты (тимусзависимые);
  2. В-лимфоциты (бурсазависимые);
  3. 0-лимфоциты (нулевые).

Т-лимфоциты. В период внутриутробного развития и на протяжении всей жизни предшественники Т-клеток проникают из костного мозга в тимус, где в результате контакта с его стромой и под действием гормонов, вырабатываемых в нем, проходят «обучение». Таким образом, незрелые Т-клетки в тимусе приобретают способность отличать чужеродное начало, а в периферических лимфоидных тканях первыми опознают антигены. Т-лимфоциты составляют 70-80% всех лимфоцитов крови.

Среди Т-лимфоцитов различают:

  • Т-хелперы – стимулируют дифференцировку В-лимфоцитов, осуществляя реакции гиперчувствительности замедленного типа при многих инфекционных заболеваниях.
  • Т-киллеры – осуществляют иммунный лизис чужеродных клеток. Они также участвуют в отторжении трансплантата.
  • Т-супрессоры – подавляют иммунный ответ на антигены, а также предотвращают развитие аутоиммунных реакций, подавляя клоны лимфоцитов, способных реагировать на собственные антигены организма.
  • Т-клетки иммунной памяти – хранят информацию о всех антигенных воздействиях, обеспечивая возникновение иммунного ответа в случае повторного контакта организма с данным антигеном.

Т-лимфоциты обеспечивают реакции клеточного иммунитета.

В-лимфоциты образуются в костном мозге, а дифференцировку проходят в лимфоидной ткани кишечника, аппендикса, небных и глоточной миндалин. В крови на их долю приходится 10-20% циркулирующих лимфоцитов. Основная функция В-лимфоцитов – создание гуморального иммунитета путем выработки антител, причем каждая лимфоидная клетка способна продуцировать антитела одной специфичности.

Нулевые лимфоциты не проходят дифференцировки в органах иммунной системы, но при необходимости способны превратиться в В- или Т-лимфоциты. На их долю приходится 5-10% лимфоцитов крови.

Самостоятельная работа

Работа 1. Методика взятия капиллярной крови для исследования

Работа 2. Определение количества эритроцитов

Работа 3. Определение количества лейкоцитов

Работа 4. Подсчет лейкоцитарной формулы

Работа 5. Определение гематокрита