Синапс. Физиология мышечных волокон - MedFsh.ru
Чат поддержки
Синапс. Физиология мышечных волокон
Башкирский государственный медицинский университет
БашГМУ
Нормальная физиология

Синапс. Физиология мышечных волокон

Синапс — это специфическое место контакта двух возбудимых систем (клеток) для передачи возбуждения.

«synapsis» — «соприкосновение, соединение, застежка»

По способу передачи сигналов:

  • механические,
  • химические,
  • электрические.

По виду медиатора: холинэргические и др.

Нервно-мышечный синапс (НМС) — химический, передача с помощью медиатора ацетилхолина.

Синонимы к слову НМС:

  • Нервно-мышечное соединение;
  • Моторная концевая пластинка.
Строение синапса

Аксоны нервных клеток на своих окончаниях теряют миелиновую оболочку, ветвятся, и концевые веточки аксона утолщаются. Это пресинаптическая терминаль или бляшка или пуговка, которая погружается в углубление на поверхности мышечного волокна.

Покрывающая концевую веточку аксона поверхностная мембрана называется пресинаптической мембраной, т.е. это мембрана, покрывающая поверхность синаптической бляшки (терминали аксона).

Мембрана, покрывающая мышечное волокно в области синапса, называется постсинаптической мембраной, или концевой пластинкой. Она имеет извитую структуру, образуя многочисленные складки, уходящие вглубь мышечного волокна, за счет чего увеличивается площадь контакта.

Нервно-мышечный синапс

На постсинаптической мембране находятся белковые структуры — рецепторы, способные связывать медиатор. В одном синапсе количество рецепторов достигает 10-20 млн.

Между пре- и постсинаптическими мембранами находится синаптическая щель, размеры ее в среднем 50 нм, она открывается в межклеточное пространство и заполнена межклеточной жидкостью.

В синаптической щели находится мукополисахаридное плотное вещество в виде полосок, мостиков и содержится фермент ацетилхолинэстераза.

В пресинаптической терминали находится большое количество пузырьков или везикул, заполненных медиатором — химическим веществом посредником, осуществляющим передачу возбуждения.

В нервно-мышечном синапсе медиаторацетилхолин (АХ).

Нервно-мышечный синапс, детальное строение

АХ синтезируется из холина и уксусной кислоты (ацетил-коэнзима А) с помощью фермента холинэстеразы. Эти вещества перемещаются из тела нейрона по аксону к пресинаптической мембране. Здесь в пузырьках происходит окончательное образование АХ.

3 фракции медиатора:

  1. Первая фракция — доступная — располагается рядом с пресинаптической мембраной.
  2. Вторая фракция — депонированная — располагается над первой фракцией.
  3. Третья фракция — диффузно рассеянная — наиболее удаленная от пресинаптической мембраны.

Механизм синаптической передачи

1 этап

ПД достигает терминали

2 этап

Деполяризация мембраны

3 этап

Вход ионов кальция в терминаль по градиенту

4 этап

Ионы Ca вызывают образование специального белкового комплекса, который включает в себя везикулу и структуры, расположенные непосредственно около пресинаптической мембраны.

Они связаны между собой так называемыми белками экзоцитоза.

Часть белков расположена на везикулах (синапсин, синаптотагмин, синаптобревин), а часть — на пресинаптической мембране (синтаксин, синапсо-ассоциированный белок). Данный комплекс получил название секретосома.

5 этап

Везикулы с медиатором сливаются с мембраной
Пузырьки сливаются с мембраной

6 этап

Экзоцитоз медиатора

Излитию содержимого пузырька в щель способствует белок синаптопорин, формирующий канал, по которому идет выброс медиатора.

Квант медиатора — количество молекул, содержащихся в одной везикуле.

На 1 ПД выбрасывается 100 квантов АХ.

6 этап

Медиатор диффундирует в щель

7 этап

Медиатор подходит к рецептору

8 этап

Медиатор связывается с рецептором

9 этап

Открытие хемочувствительных натрий-каналов

10 этап

Ионы натрия проходят по градиенту

На постсинаптической мембране возникает потенциал концевой пластинки (ПКП). Он является аналогом локального ответа (ЛО).

Потенциал действия на постсинаптической мембране не возникает! Он формируется на соседней мембране мышечного волокна.

Судьба медиатора:

  • связывание с рецептором,
  • разрушение ферментов (ацетилхолинэстеразой),
  • обратное поглощение в пресинаптическую мембрану,
  • вымывание из щели и фагоцитоз.

События в синапсе:

  1. ПД приходит к терминали аксона;
  2. Он деполяризует пресинаптическую мембрану;
  3. Ca2+ входит в терминаль, что приводит к выделению АХ;
  4. В синаптическую щель выделяется медиатор АХ;
  5. Он диффундирует в щель и связывается с рецепторами постсинаптической мембраны;
  6. Меняется проницаемость постсинаптической мембраны для ионов Na+;
  7. Ионы Na+ проникают в постсинаптическую мембрану и уменьшают ее заряд — возникает потенциал концевой пластинки (ПКП).

На самой постсинаптической мембране ПД возникнуть не может, так как здесь отсутствуют потенциалзависимые каналы, они являются хемозависимыми!

  1. ПКП суммируются и достигают КУД на соседнем участке мышечного волокна, что приводит к возникновению ПД и его распространению по мышечному волокну (около 5 м/с).

Достигнув пороговой величины, то есть КУД, ПКП возбуждает соседнюю (внесинаптическую) мембрану мышечного волокна за счет местных круговых токов.

Работа нервно-мышечного синапса

Особенности проведения возбуждения в нервно-мышечном синапсе

Одностороннее проведение возбуждения — только в направлении от пресинаптического окончания к постсинаптической мембране.

Суммация возбуждения соседних постсинаптических мембран.

Синаптическая задержка — замедление в проведении импульса от нейрона к мышце составляет 0,5-1 мс. Это время затрачивается на секрецию медиатора, его диффузию к постсинаптической мембране, взаимодействие с рецептором, формирование ПКП, их суммацию.

Низкая лабильность — она составляет 100-150 имп/с для сигнала, что в 5-6 раз ниже лабильности нервного волокна.

Чувствительность к действию лекарственных веществ, ядов, БАВ, выполняющих роль медиатора.

Утомляемость химических синапсов — выражается в ухудшении проводимости вплоть до блокады в синапсе при длительном функционировании синапса. Главная причина утомляемости — исчерпание запасов медиатора в пресинаптическом окончании.

Законы проведения возбуждения по нервам:

  1. Закон функциональной целостности нерва.
  2. Закон изолированного проведения возбуждения.
  3. Закон двустороннего проведения возбуждения.

В зависимости от скорости проведения возбуждения нервные волокна подразделяются на 3 группы: A, B, C. В группе A выделяют 4 подгруппы: альфа, бетта, гамма и сигма.

Физиология мышечных волокон

Три типа мышц:

  • скелетная (40-50% массы тела),
  • сердечная (менее 1%),
  • гладкая (8-9%).

Физиологические свойства скелетных мышц:

  1. Возбудимость — способность отвечать на действие раздражителя возбуждением.
  2. Проводимость — способность проводить возбуждение из места его возникновения к другим участкам мышцы.
  3. Лабильность — способность мышцы сокращаться в соответствии с частотой действия раздражителя (200-300 Гц для скелетной мышцы).
  4. Сократимость — для мышцы является специфическим свойством — это способность мышцы изменять длину или напряжение в ответ на действие раздражителя.

Физические свойства скелетных мышц:

  1. Растяжимость — способность мышцы изменять длину под действием растягивающей силы.
  2. Эластичность — способность мышцы восстанавливать первоначальную длину или форму после прекращения действия растягивающей силы.
  3. Силы мышц — способность мышцы поднять максимальный груз.
  4. Способность мышцы совершать работу.

Режимы сокращения:

  • Изотонический,
  • Изометрический,
  • Ауксотонический.

Изотонический режим — сокращение мышцы происходит с изменением ее длины без изменения напряжения (тонуса) (напр.: сокращение мышц языка).

Изометрический режим — длина постоянная, увеличивается степень мышечного напряжения (тонуса) (напр.: при поднятии непосильного груза).

Ауксотонический режим — одновременно изменяется длина и напряжение мышцы (характерен для обычных двигательных актов).

Механизм сокращения поперечно-полосатых мышц

Любая скелетная мышца состоит из мышечных волокон, которые, в свою очередь, состоят из множества тонких нитей — миофибрилл, расположенных продольно. Каждая миофибрилла состоит из протофибрилл — нитей сократительных белков: миозина (миозиновая протофибрилла), актина (актиновая протофибрилла).

Кроме сократительных белков в миофибрилле имеются два регуляторных белка: тропомиозин и тропонин.

Миозиновые волокна соединены в толстый пучок, от которого в торону актиновых нитей отходят поперечные мостики. У каждого мостика выделяют шейку и головку.

Нить актина располагается в виде 2 скрученных ниток бус. На ней имеются актиновые центры.

Сократительные и регуляторные белки

Тропомиозин в виде спиралей оплетает поверхность актина, закрывая в покое ее центры. Одна молекула тропомиозина контактирует с 7 молекулами актина.

Тропонин образует утолщение на конце каждой нити тропомиозина.

Под влиянием возникшего в мышечном волокне ПД из саркоплазматического ретикулума (СПР — депо Ca2+) высвобождаются ионы Ca. Кальций связывается с тропонином, который смещает тропомиозиновый стержень, что приводит к открытию актиновых центров.

Механизм сокращения миокарда

В результате, к актиновым центрам присоединяются головки поперечных миозиновых мостиков.

Эти постики совершают «гребущие движения», в результате чего нити актина перемещаются этими мостиками относительно волокон миозина, происходит укорочение мышцы.

Процесс расслабления происходит в обратной последовательности с использованием энергии АТФ за счет функционирования кальциевого насоса.

При отсутствии повторного импульса ионы Ca не поступают из СПР. В результате отсутствия Ca-тропонинового комплекса, тропомиозин возвращается на свое прежнее место, блокируя актиновые центры актина. Актиновые протофибриллы легко скользят в обратном направлении благодаря эластичности мышцы, и мышца удлиняется (расслабляется).

Гладкие мышцы

Гладкие мышцы — это мышцы, формирующие слой стенок полых внутренних органов. Они построены из веретенообразных одноядерных мышечных клеток без поперечной исчерченности за счет хаотичного расположения миофибрилл.

Особенности гладких мышц:

  • Иннервируются волокнами вегетативной нервной системы (ВНС);
  • Обладают низкой возбудимостью:
  • Обладают низкой величиной МП (мембранного потенциала) — -50 — -60 мВ из-за более высокой проницаемости для ионов Na+
  • ПД (потенциал действия) отличается меньшей амплитудой и большей длительностью. Он формируется в основном за счет ионов Ca2+
  • Медленная проводимость:

Клетки в гладких мышцах функционально связаны между собой посредством щелевидных контактов — нексусов, которые имеют низкое электрическое сопротивление. За счет этих контактов ПД распространяется с одного мышечного волокна на другое, охватывая большие мышечные пласты, и в реакцию вовлекается вся мышца.

  • Сократимость:

Гладкие мышцы способны осуществлять относительно медленные ритмические и длительные тонические сокращения.

Медленные ритмические сокращения обеспечивают перемещение содержимого органа из одной области в другую.

Длительные тонические сокращения, особенно сфинктеров полых органов, препятствуют выходу из них содержимого.

  • Пластичность:

Это способность сохранять приданную им при растяжении или деформации форму. Благодаря пластичности гладкая мышца может быть полностью расслаблена как в укороченном, так и в растянутом состоянии.

  • Автоматия:

Особенность гладких мышц, отличающая их от скелетных. Благодаря автоматии гладкие мышцы могут сокращаться в условиях отсутствия иннервации. Важную роль в этом играет растяжение.

Растяжение является адекватным раздражителем для гладкой мускулатуры. Сильное и резкое растяжение гладких мышц вызывает их сокращение.

Сравнительная характеристика скелетных и гладких мышц:

Сравнительная характеристика скелетных и гладких мышц
Добавить учебный материал
Избранное
полный список и управление избранным