Регуляция дыхания

admin

Теория по нормальной физиологии. Тема: Регуляция дыхания. Дыхательный центр, опыты Фредерика и Холдена, действие карбогена, хеморецепторы, механорецепторы..

При создании данной страницы использовалась лекция по соответствующей теме, составленная Кафедрой Нормальной физиологии БашГМУ

Навигация:

  1. Дыхательный центр
  2. Опыт Фредерика с перекрестным кровообращением у собак.
  3. Опыт Холдена
  4. Действие карбогена
  5. Периферические хеморецепторы
  6. Медуллярные хеморецепторы
  7. Механорецепторы (рецепторы растяжения)
  8. Ритмическая смена дыхательных фаз

Регуляция дыхания осуществляется ЦНС.

Спокойное дыхание взрослого человека характеризуется последовательной сменой актов вдоха и выдоха с частотой 14-16 дыханий в минуту.

Чтобы произошел вдох, необходимо сокращение дыхательных мышц.

Импульсы к ним поступают от мотонейронов передних рогов спинного мозга.

К диафрагме – от III – IV шейных сегментов, к межреберным мышцам – от грудных сегментов спинного мозга.

Мотонейроны получают импульсы от дыхательного центра, расположенного в продолговатом мозге.

Если перерезать спинной мозг под продолговатым мозгом, то дыхание – прекращается.

Дыхательный центр

Был открыт в 1812 г. Легаллуа и в 1842 г. Флурансом, которые своими опытами доказали его локализацию в продолговатом мозге.

Н.А.Миславский в 1885 г. уточнил местоположение дыхательного центра – в области РФ (ретикулярной формации) продолговатого мозга, т.к. перерезка между грудными и шейными сегментами спинного мозга – сохраняет диафрагмальное дыхание:

  • продолговатым и спинным – полностью прекращает дыхание,
  • выше продолговатого мозга – дыхание сохраняется.

Н.А.Миславским также было показано, что дыхательный центр состоит из двух отделов:

  • инспираторного (отвечает на вдох),
  • экспираторного (отвечает за выдох).

Они находятся в реципрокных (то есть в противоположных) отношениях.

В настоящее время установлено:

  • в РФ продолговатого мозга находятся инспираторные и экспираторные нейроны,
  • эти нейроны рассеяны диффузно, среди других нейронов РФ и относительно друг друга,
  • инспираторных нейронов примерно вдвое больше, чем экспираторных.

В продолговатом мозге есть еще два скопления дыхательных нейронов – дорсальные и вентральные дыхательные ядра.

Дорсальное ядро содержит, в основном, инспираторные нейроны, контролирующие сокращение диафрагмы.

В вентральном ядре содержатся как инспираторные, так и экспираторные нейроны, которые включаются при форсированном дыхании.

Все дыхательные нейроны делят на 6 групп:

  • ранние инспираторные – активны в начале фазы вдоха (инспирации),
  • поздние инспираторные – активны в конце вдоха,
  • полные инспираторные – активны в течение всего вдоха,
  • постинспираторные – максимальный разряд в начале выдоха,
  • экспираторные – активны во вторую фазу выдоха,
  • преинспираторные – активны перед вдохом, они включают активную экспирацию (выдох.

Значение дыхательных нейронов:

  • Преинспираторные и ранние инспираторные влияют на момент начала вдоха.
  • Инспираторные нейроны ДЦ генерируют дыхательный ритм (частоту и глубину дыхания), иннервируют мотонейроны.
  • Постинспираторные нейроны контролируют процесс пассивного выдоха.
  • Экспираторные нейроны отвечают за активный выдох, так как иннервируют мотонейроны внутренних межреберных мышц и мышц передней брюшной стенки.
Уровни организации дыхательного центра

Дыхательный центр – это совокупность нервных клеток, расположенных в различных отделах ЦНС и принимающих участие в регуляции дыхания.

Опыт Фредерика (1901 г.) с перекрестным кровообращением у собак.

У двух собак, находящихся под наркозом, перекрестно соединяли сонные артерии и яремные вены, латерально же расположенные сосуды пережимали. При этом голова 1-й собаки снабжались кровью из туловища 2-й и наоборот.

У первой собаки кратковременно пережимали трахею, и у нее в крови уменьшалось содержание кислорода (гипоксемия) и увеличивалось содержание углекислого газа (гиперкапния). Эта кровь поступала в голову 2-й собаки, и у нее наступала одышка (диспноэ).

В результате у нее в крови увеличивалось содержание кислорода (гипероксимия) и уменьшалось содержание углекислого газа (гипокапния), и эта кровь поступала в голову 1-й собаки, и у нее наступало апноэ – остановка дыхания. (Нормальное дыхание — эйпноэ).

На состояние ДЦ влияет газовый состав крови:

При увеличении в крови напряжения углекислого газа и уменьшении кислорода, ДЦ – возбуждается и, наоборот, уменьшается, если в крови уменьшается напряжение углекислого газа и увеличивается напряжение кислорода.

Опыт Холдена

При дыхании в герметичной камере в воздухе увеличивалось содержание CO2 и уменьшалось O2 – наступала одышка. Когда CO2 поглощается натронной известью, одышка наступала намного позже, хотя содержание O2 в воздухе значительно снижалось.

Одышка наступает:

  • При снижении O2 в атмосферном воздухе с 20,94% до 12%, т.е. на 9%.
  • При повышении содержания CO2 в альвеолярном воздухе на 0,17% вентиляция удваивается.

Главный активатор ДЦ – CO2

Действие карбогена

Карбоген – газовая смесь, состоящая из 96% — O2, 4% — CO2.

В сравнении с воздухом в карбогене в 4,8 раза больше O2 и в 130 раз – CO2.

Карбоген применяют при расстройствах дыхания.

Эффект карбогена связан с эффектами содержащегося в нем CO2:

  1. стимуляция ДЦ,
  2. расширение бронхов и кровеносных сосудов,
  3. сдвиг кривой диссоциации HbO2 вправо –> увеличение диффузии O2 из крови в ткани.

Карбоген применяется в медицинских целях для лечения горной болезни, отравления угарным газом, глаукомы, стресса, при восстановлении слуха после воздействия шума и в ряде случаев для улучшения кровоснабжения опухолей при химио- и лекарственной терапии.

В 1911 г. Винтерштейн доказал, что возбудителем ДЦ также являются ионы Н.

Ацидоз – усиливает легочную вентиляцию.

Он показал, что возбуждают ДЦ нелетучие кислоты – молочная, никотиновая и другие.

Самым сильным стимулятором дыхания являются:

  • pCO2 (гиперкапния),
  • pH (ацидоз),
  • pO2 (гипоксемия).

Механизм действия гуморальных факторов (CO2, O2, H) на ДЦ:

  1. Через хеморецепторы (периферические) сосудистых рефлексогенных зон.
  2. Через хеморецепторы, находящиеся в продолговатом мозге (медуллярные).

Периферические хеморецепторы:

  • расположены в каротидных и в аортальных тельцах,
  • реагируют на (в артериальной крови):
    • увеличение pCO2,
    • уменьшение pO2,
    • увеличение H (от есть уменьшение pH).

Хеморецепторы возбуждаются постоянно CO2 и O2 , растворенными в крови, а также H, т.к. порог для pCO2 равен 20-30 мм.рт.ст. В норме pCO2 = 40 мм.рт.ст.

Порог для pO2 равен 130-140 мм.рт.ст. В норме pO2 = 100 мм.рт.ст. Одышка же наступает при pO2 ниже 50-60 мм.рт.ст.

Таким образом, хеморецепторы постоянно посылают импульсы в ДЦ, возбуждая инспираторные нейроны, причем большую роль играют хеморецепторы каротидного синуса.

Медуллярные хеморецепторы:

  • Находятся на вентролатеральной поверхности продолговатого мозга.
  • Реагируют только на H и изменение напряжения CO2.
  • Эти рецепторы возбуждаются позднее, поскольку требуется время для проникновения CO2 через гематоэнцефалический барьер.
  • Импульсы, поступающие с медуллярных хеморецепторов в ДЦ, увеличивают прирост вентиляции на 60-80%.

Механорецепторы (рецепторы растяжения)

Находятся в:

  • легких,
  • дыхательных путях,
  • дыхательных мышцах (проприорецепторы)

Это барорецепторы рефлексогенных зон.

Механорецепторы легких (РРЛ)

Рецепторы растяжения легких (РРЛ) – являются наиболее значимым среди всех механорецепторов.

В 1868 г. Геринг и Брейер доказали наличие в легких рецепторов, которые возбуждаются при их растяжении, то есть при вдохе. Они являются чувствительными окончаниями блуждающих нервов, которые направляют свои импульсы в ДЦ.

Геринг и Брейтер раздували легкие и наблюдали прекражение вдоха (инспираторно-тормозной рефлекс).

Таким образом, этот рефлекс способствует смене вдоха на выдох. Он называется рефлексом Геринга-Брейера и является рефлексом саморегуляции дыхания.

При перерезке блуждающих нервов, дыхание становится редким и глубоким, альвеолы расширяются до максимального предела, т.к. вдох не тормозится. В этом случае, смене вдоха на выдох будет способствовать пневмотаксический центр (ПТЦ).

В настоящее время известно, что в легких существует 3 разновидности  механорецепторов:

  • РРЛ медленноадаптирующиеся,
  • РРЛ быстроадаптирующиеся или ирритантные,
  • Юкстаальвеолярные рецепторы капилляров.

РРЛ медленноадаптирующиеся:

  • Они расположены в ГМК (гладкомышечных клетках) дыхательных путей.
  • Возбуждаются при вдохе.
  • С них осуществляется рефлекс Геринга-Брейера.

Ирритантные рецепторы (быстроадаптирующиеся):

  • Расположены в слизистой дыхательных путей.
  • Реагируют на механические и химические стимулы.
  • Быстро адаптирующиеся.
  • Длительное раздражение этих рецепторов приводит к хроническому бронхиту.

Физиологическое значение при вдыхании токсических веществ: Сужение бронхов -> вентиляция альвеол -> поступление этих веществ в альвеолы и кровь.

Юкстаальвеолярные рецепторы («юкстакапиллярные»):

  • расположены в паренхиме легких, в альвеолярных перегородках, прилегающих к капиллярам,
  • стимулируются, главным образом, растяжением легочных сосудов,
  • быстро реагируют на введение химических веществ в легочные сосуды,
  • стимуляция может вызвать апноэ, затем учащение дыхания, уменьшение давления, брадикардию и бронхоспазм.

Возбуждение механорецепторов верхних ДП вызывает возникновение дыхательных рефлексов.

Защитные дыхательные рефлексы:

  • Чихание – с рецепторов слизистой носа.
  • Кашель – с ирритантных рецепторов слизистой гортани, трахеи, бронхов.
  • Рефлекс ныряльщиков – остановка дыхания при действии воды на носовые ходы.
  • Остановка дыхания во время акта глотания.
  • Рефлексогенная задержка дыхания – сужение голосовой щели, бронхоконстрикция при вдыхании дыма, газов, едких веществ.

Механорецепторы межреберных мышц и диафрагмы (проприорецепторы) – они осуществляют обратную связь дыхательных мышц с ДЦ.

Барорецепторы рефлексогенных зон – возбуждаются они при увеличении АД и дыхание при этом угнетается. При уменьшении АД – дыхание усиливается.

Ритмическая смена дыхательных фаз

Ритмическая смена дыхательных фаз
  1. Генератор центральной инспираторной активности (возбуждения) – сокр. ЦИА (В) – представлен α-инспираторными нейронами дорсального ядра. Они возбуждаются от хеморецепторов (центральных и сосудистых рефлексогенных зон). Чем больше раздражение хеморецепторов (ХР), тем больше скорость ЦИА.
  2. Механизм выключения инспирации – состоит из β-инспираторных нейронов и инспираторно-тормозных (ИТ), т.е. экспираторных нейронов. β-инспираторные нейроны возбуждаются афферентными сигналами от РРЛ. На механизм выключения вдоха влияют также нисходящие импульсы от ПТЦ.

Хеморецепторы возбуждаются постоянно и постоянно посылают импульсы в продолговатый мозг, возбуждая α-инспираторные нейроны. Они возбуждаются и посылают импульсы к мотонейронам спинного мозга.

Мотонейроны возбуждаются и посылают импульсы к мышцам. Они сокращаются и наступает вдох.

При вдохе объем легких увеличивается и возбуждаются РРЛ, которые посылают возбуждающие импульсы по чувствительным волокнам блуждающего нерва к β-инспираторным нейронам. В результате суммации импульсов от α-инспираторных нейронов и рецепторов растяжения легких достигается порог и возбуждаются  и β-инспираторные нейроны благодаря влиянию вышележащих отделов ЦНС.

Инспираторно-тормозные нейроны посылают тормозные импульсы к α-инспираторным нейронам. В результате α-инспираторные нейроны тормозятся и не посылают импульсы к мотонейронам. Мышцы расслабляются, происходит выдох.

К β-инспираторным нейронам не поступают импульсы, и они тормозятся (не возбуждаются).

β-инспираторные нейроны не возбуждают инспираторно-тормозные нейроны и поэтому они не посылают импульсы к  α-инспираторным нейронам. α-инспираторные нейроны вновь возбуждаются импульсами от хеморецепторов и наступает вдох.

15 0