Регуляция активности ферментов in vivo, О.А. Тимин - MedFsh.ru
Чат поддержки
ОМТ, Биохимия, Тимин, Регуляция активности ферментов in vivo
Общая медицинская теория
ОМТ
ОМТ или Общая медицинская теория — это раздел, в котором размещены теоретические материалы, известные в любом медицинском вузе. Раздел ОМТ в пределах определенного вуза нужен для того, чтобы адаптировать такие материалы под тематические планы вуза. На данный момент тематических планов от пользователей нам не поступало.

Регуляция активности ферментов in vivo

Активность ферментов в клетке непостоянна во времени. Она чутко реагирует на ситуацию, в которой оказывается клетка, на факторы, воздействующие на клетку как снаружи, так и изнутри. Главная цель этой реакции – отреагировать на изменение окружающей среды, приспособить клетку к новым условиям, дать должный ответ на гормональные и иные стимулы, а в некоторых ситуациях – получить шанс выжить.

1. Доступность субстрата или кофермента

Здесь работает закон действия масс – фундаментальный закон химической кинетики: при постоянной температуре скорость химической реакции пропорциональна произведению концентрации реагирующих веществ. Или упрощенно – скорость, с которой вещества реагируют друг с другом, зависит от их концентрации. Таким образом, изменение количества хотя бы одного из субстратов прекращает или начинает реакцию.

Например, для цикла трикарбоновых кислот таким субстратом является оксалоацетат (щавелевоуксусная кислота).

Роль оксалоацетата в регуляции ЦТК

2. Компартментализация

Компартментализация – это сосредоточение ферментов и их субстратов в одном компартменте (одной органелле) – в эндоплазматическом ретикулуме, митохондриях, лизосомах. Например, β-окисление жирных кислот протекает в митохондриях, синтез белка – в рибосомах.

3. Генетическая регуляция – изменение количества фермента

Изменение количества фермента может происходить в результате увеличения или снижения его синтеза. С этой точки зрения ферменты можно подразделить на три группы:

  • конституитивные – такие ферменты, которые образуются в клетке постоянно.
  • индуцируемые (адаптивные) – синтез этих ферментов возрастает при наличии соответствующих стимулов (индукторов).
  • репрессируемые – образование таких ферментов в клетке при необходимости подавляется.

Изменение скорости синтеза фермента (индукция или репрессия) обычно зависит от количества определенных гормонов или метаболитов процесса.

Примеры индуцируемых ферментов:

  • исчезновение пищеварительных ферментов при длительном голодании и индукция их синтеза в восстановительный период в результате возобновления секреции гормонов ЖКТ,
  • гормоны глюкокортикоиды стимулируют синтез ферментов синтеза глюкозы (глюконеогенеза), что обеспечивает стабильность концентрации глюкозы в крови при длительном голоданиии и устойчивость ЦНС к стрессу,
  • токсические субстраты (например, этанол и барбитураты) стимулируют в печени синтез «своего» изофермента цитохрома Р450, который окисляет и обезвреживает эти вещества.

Примеры репрессируемых ферментов:

  • подавление синтеза триптофана бактериями при деятельности триптофанового оперона (см «Регуляция транскрипции»),
  • в печени репрессия фермента синтеза холестерола ГМГ-SKoA-редуктазы под влиянием холестерина и желчных кислот.

4. Ограниченный (частичный) протеолиз проферментов

Синтез некоторых ферментов осуществляется в виде более крупного предшественника (трипсиноген, пепсиноген, прокарбоксипептидазы, факторы свертывания крови) и при поступлении в нужное место этот фермент активируется через отщепление от него одного или нескольких пептидных фрагментов.

Схема активации фермента способом ограниченного протеолиза

Секреция ряда ферментов за пределы клетки в неактивном состоянии позволяет предохранить клетки от повреждения (пищеварительные ферменты) или сохранить белок до наступления определенного момента (протромбин, фибриноген, белки комплемента).

5. Аллостерическая регуляция

Аллостерические ферменты построены из двух и более субъединиц: одни субъединицы содержат каталитический центр, другие являются регуляторными. Присоединение эффектора к аллостерической (регуляторной) субъединице изменяет конформацию белка и активность каталитической субъединицы.

Аллостерические ферменты обычно стоят в начале метаболических путей, и от их активности зависит течение многих последующих реакций. Поэтому они часто называются ключевыми ферментами.

Роль аллостерической регуляции ферментов, аллостерическая регуляция фосфофруктокиназы

В качестве отрицательного регулятора может выступать конечный метаболит биохимического процесса, продукт данной реакции, т. е. работает механизм обратной отрицательной связи. Если регуляторами являются начальный метаболит или субстрат реакции, то говорят о прямой регуляции, она может быть как положительной, так и отрицательной. Также регулятором могут быть метаболиты биохимических путей, каким-то образом связанных с данной реакцией.

Например, фермент энергетического распада глюкозы, фосфофруктокиназа, регулируется промежуточными и конечными продуктами этого распада. При этом АТФ, лимонная кислота, фруктозо-1,6- дифосфат являются ингибиторами, а фруктозо-6-фосфат и АМФ – активаторами фермента.

6. Белок-белковое взаимодействие

Термин белок-белковое взаимодействие обозначает ситуацию, когда в качестве регулятора выступают не метаболиты биохимических процессов, а специфичные белки. Влияние каких-либо факторов на эти белки изменяет их активность, и они, в свою очередь, воздействуют на нужный фермент.

К примеру, мембранный фермент аденилатциклаза является чувствительным к воздействию мембранного G-белка, который сам активируется при действии на клетку некоторых гормонов (например, адреналина и глюкагона).

Упрощенная схема активации аденилатциклазы

Другим примером белок-белкового взаимодействия может быть регуляция активности протеинкиназы А. Протеинкиназа А является тетрамерным ферментом, состоящим из 2 каталитических (С) и 2 регуляторных (R) субъединиц. Активатором для протеинкиназы А является цАМФ. Присоединение цАМФ к регуляторным субъединицам фермента вызывает изменение их конформации и отхождение от каталитических субъединиц. Каталитические субъединицы при этом активируются.

Аллостерическая активация протеинкиназы А при помощи цАМФ

7. Ковалентная (химическая) модификация

Ковалентная модификация заключается в обратимом присоединении или отщеплении определенной группы, благодаря чему изменяется активность фермента. Чаще всего такой группой является фосфорная кислота, реже метильные и ацетильные группы. Фосфорилирование фермента происходит по остаткам серина, треонина, тирозина. Присоединение фосфорной кислоты к белку осуществляют ферменты протеинкиназы, отщепление – протеин- фосфатазы.

Изменение активности фермента способом фосфорилирования-дефосфорилирования

Ферменты могут быть активны как в фосфорилированном, так и в дефосфорилированном состоянии. Например, ферменты гликогенфосфорилаза и гликогенсинтаза в мышцах при нагрузке фосфорилируются, при этом фосфорилаза гликогена становится активной и начинает расщепление гликогена, а гликогенсинтаза неактивна. При отдыхе и синтеза гликогена оба фермента дефосфорилируются, синтаза при этом становится активной, фосфорилаза – неактивной.

Зависимость активности ферментов обмена гликогена от наличия в структуре фосфорной кислоты
Добавить учебный материал
Избранное
полный список и управление избранным